
A Appendix

A.1 The Choice Set of Household EPHI Plans

Table A1 and A2 show how the household EPHI eligibility, et , and household retirement
status, Lt , affect the choice set of household EPHI plan, Jt . The first column lists all pos-
sible household EPHI eligibilities, and the first row lists all possible household retirement
statuses. Each cell represents the choice set of household EPHI plan decisions, Jt , under
a specific household EPHI eligibility and a specific household retirement status. Consider,
for example, the first cell in Table A1. It shows a household in which both spouses’ em-
ployers provide health insurance whether they are working or retired, and the insurance can
cover the other spouse. When the household decides that both spouses retire, three house-
hold EPHI plan choices are available: (1) both spouses are covered by the husband’s EPHI,
(m,m); (2) both are covered by the wife’s EPHI, ( f , f ); and (3) the husband is covered by
his own EPHI and the wife is covered by her own EPHI, (m, f ).1 In this paper, I assume
that a household makes the EPHI plan choice every period until both spouses are retired.2

A.2 Taxes

Individuals pay federal, state, and payroll taxes on income. I compute federal taxes using
the Federal Income Tax tables for "Married Filing Jointly" in 1998.3 I use the standard
deduction,4 and do not allow individuals to claim medical expenses as an itemized deduc-
tion. The state income tax rate varies across the U.S., and I use the average state tax rate to
calculate state income taxes for each household. For a worker, payroll taxes are 7.65% up
to $68,400, and are 1.45% thereafter.

In period t, a household’s pre-tax income, Yt , is

Yt = rAt + ∑
i=m, f

wit(1−Lit)+ ∑
i=m, f

bit .

Post-tax income, yt , is computed by applying the three taxes on pre-tax income, Yt ,

1A worker has to enroll in his own EPHI plan before he can add the other spouse into the plan. Thus, it is
impossible that the husband is covered by the wife’s EPHI and the wife is covered by the husband’s EPHI. In
other words, ( f ,m) is not a valid choice.

2In my sample, no household switches EPHI choices after both spouses retire. Therefore, I assume that a
household stops making the EPHI plan choice after both spouses are retired.

3For widows or widowers, I compute federal taxes using the Federal Income Tax tables for "Single" in
1998.

4The standard deduction is $12,500 for a household, and is $6,250 for a widow or widower.
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Table A1: The Choice Set of Household EPHI Plan Choices Jt
Lt=(1,1) Lt=(1,0) Lt=(0,1) Lt=(0,0)

em=(1,1,1,1) J t={(m,m), J t={(m,m), J t={(m,m), J t={(m,m),
e f =(1,1,1,1) (f,f),(m,f)} (f,f),(m,f)} (f,f),(m,f)} (f,f),(m,f)}
em=(1,1,1,1) J t={(m,m), J t={(m,m), J t={(m,m), J t={(m,m),
e f =(1,1,1,0) (m,f)} (f,f),(m,f)} (m,f)} (f,f),(m,f)}
em=(1,1,1,1) J t={(m,m)} J t={(m,m)} J t={(m,m)} J t={(m,m),
e f =(1,1,0,0) (f,f),(m,f)} (f,f),(m,f)}
em=(1,1,1,1) J t={(m,m), J t={(m,m), J t={(m,m), J t={(m,m),
e f =(1,0,1,0) (m,f)} (m,f)} (m,f)} (m,f)}
em=(1,1,1,1) J t={(m,m)} J t={(m,m), J t={(m,m)} J t={(m,m),
e f =(1,0,0,0) (m,f)} (m,f)}
em=(1,1,1,1) J t={(m,m)} J t={(m,m)} J t={(m,m)} J t={(m,m)}
e f =(0,0,0,0)
em=(1,1,1,0) J t={(f,f), J t={(f,f), J t={(m,m), J t={(m,m),
e f =(1,1,1,1) (m,f)} (m,f)} (f,f),(m,f)} (f,f),(m,f)}
em=(1,1,1,0) J t={(m,f)} J t={(f,f), J t={(m,m), J t={(m,m),
e f =(1,1,1,0) (m,f)} (m,f)} (f,f),(m,f)}
em=(1,1,1,0) J t={(m,0)} J t={(f,f), J t={(m,m)} J t={(m,m),
e f =(1,1,0,0) (m,f)} (f,f),(m,f)}
em=(1,1,1,0) J t={(m,f)} J t={(m,f)} J t={(m,m), J t={(m,m),
e f =(1,0,1,0) (m,f)} (m,f)}
em=(1,1,1,0) J t={(m,0)} J t={(m,f)} J t={(m,m)} J t={(m,m),
e f =(1,0,0,0) (m,f)}
em=(1,1,1,0) J t={(m,0)} J t={(m,0)} J t={(m,m)} J t={(m,m)}
e f =(0,0,0,0)
em=(1,1,0,0) J t={(f,f)} J t={(f,f)} J t={(m,m), J t={(m,m),
e f =(1,1,1,1) (f,f),(m,f)} (f,f),(m,f)}
em=(1,1,0,0) J t={(0,f)} J t={(f,f)} J t={(m,m), J t={(m,m),
e f =(1,1,1,0) (m,f)} (f,f),(m,f)}
em=(1,1,0,0) J t={(0,0)} J t={(f,f)} J t={(m,m)} J t={(m,m),
e f =(1,1,0,0) (f,f),(m,f)}
em=(1,1,0,0) J t={(0,f)} J t={(0,f)} J t={(m,m), J t={(m,m),
e f =(1,0,1,0) (m,f)} (m,f)}
em=(1,1,0,0) J t={(0,0)} J t={(0,f)} J t={(m,m)} J t={(m,m),
e f =(1,0,0,0) (m,f)}
em=(1,1,0,0) J t={(0,0)} J t={(0,0)} J t={(m,m)} J t={(m,m)}
e f =(0,0,0,0)
em=(1,0,1,0) J t={(f,f), J t={(f,f), J t={(f,f), J t={(f,f),
e f =(1,1,1,1) (m,f)} (m,f)} (m,f)} (m,f)}
em=(1,0,1,0) J t={(m,f)} J t={(f,f), J t={(m,f)} J t={(f,f),
e f =(1,1,1,0) (m,f)} (m,f)}
em=(1,0,1,0) J t={(m,0)} J t={(f,f), J t={(m,0)} J t={(f,f),
e f =(1,1,0,0) (m,f)} (m,f)}
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Table A2: Table A1 Continued
Lt=(1,1) Lt=(1,0) Lt=(0,1) Lt=(0,0)

em=(1,0,1,0) J t={(m,f)} J t={(m,f)} J t={(m,f)} J t={(m,f)}
e f =(1,0,1,0)
em=(1,0,1,0) J t={(m,0)} J t={(m,f)} J t={(m,0)} J t={(m,f)}
e f =(1,0,0,0)
em=(1,0,1,0) J t={(m,0)} J t={(m,0)} J t={(m,0)} J t={(m,0)}
e f =(0,0,0,0)
em=(1,0,0,0) J t={(f,f)} J t={(f,f)} J t={(f,f), J t={(f,f),
e f =(1,1,1,1) (m,f)} (m,f)}
em=(1,0,0,0) J t={(0,f)} J t={(f,f)} J t={(m,f)} J t={(f,f),
e f =(1,1,1,0) (m,f)}
em=(1,0,0,0) J t={(0,0)} J t={(f,f)} J t={(m,0)} J t={(f,f),
e f =(1,1,0,0) (m,f)}
em=(1,0,0,0) J t={(0,f)} J t={(0,f)} J t={(m,f)} J t={(m,f)}
e f =(1,0,1,0)
em=(1,0,0,0) J t={(0,0)} J t={(0,f)} J t={(m,0)} J t={(m,f)}
e f =(1,0,0,0)
em=(1,0,0,0) J t={(0,0)} J t={(0,0)} J t={(m,0)} J t={(m,0)}
e f =(0,0,0,0)
em=(0,0,0,0) J t={(f,f)} J t={(f,f)} J t={(f,f)} J t={(f,f)}
e f =(1,1,1,1)
em=(0,0,0,0) J t={(0,f)} J t={(f,f)} J t={(0,f)} J t={(f,f)}
e f =(1,1,1,0)
em=(0,0,0,0) J t={(0,0)} J t={(f,f)} J t={(0,0)} J t={(f,f)}
e f =(1,1,0,0)
em=(0,0,0,0) J t={(0,f)} J t={(0,f)} J t={(0,f)} J t={(0,f)}
e f =(1,0,1,0)
em=(0,0,0,0) J t={(0,0)} J t={(0,f)} J t={(0,0)} J t={(0,f)}
e f =(1,0,0,0)
em=(0,0,0,0) J t={(0,0)} J t={(0,0)} J t={(0,0)} J t={(0,0)}
e f =(0,0,0,0)

yt =



0.9235Yt i f Yt
2 6 12500,

2(11543.75+0.7323(Yt
2 −12500)) i f 12500 < Yt

2 6 42350,

2(33402.91+0.5665(Yt
2 −42350)) i f 42350 < Yt

2 6 102300,

2(67363.67+0.5283(Yt
2 −102300)) i f 102300 < Yt

2 6 136800,

2(85590.02+0.5903(Yt
2 −136800)) i f 136800 < Yt

2 6 155950,

2(96894.27+0.5265(Yt
2 −155950)) i f 155950 < Yt

2 6 278450,

2(161390.52+0.4806(Yt
2 −278450)) i f Yt

2 > 278450.

If one spouse dies, the widow or widower’s pre-tax income is

Yt = rAt +wit(1−Lit)+bit ,
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and his post-tax income is

yt =



0.9235Yt i f Yt
2 6 6250,

2(5771.87+0.7323(Yt
2 −6250)) i f 6250 < Yt

2 6 21175,

2(16701.45+0.5665(Yt
2 −21175)) i f 21175 < Yt

2 6 51150,

2(33682.29+0.5283(Yt
2 −51150)) i f 51150 < Yt

2 6 68400,

2(42795.47+0.5903(Yt
2 −68400)) i f 68400 < Yt

2 6 77975,

2(48447.59+0.5265(Yt
2 −77975)) i f 77975 < Yt

2 6 139225,

2(80695.71+0.4806(Yt
2 −139225)) i f Yt

2 > 139225.

A.3 Social Security and Pension Benefits

In this subsection, I first introduce the formula that determines an individual’s PIA. Then, I
describe how I calculate Social Security benefits and pension benefits.

A.3.1 PIA Formula

A worker’s PIA, ϒit , is a monotone increasing function of his AIME, ∆it ,

ϒit =


0.9∆it i f ∆it < 5724,

5151.6+0.32(∆it−5724) i f 5724≤ ∆it < 34500,

14359.9+0.15(∆it−34500) i f ∆it ≥ 34500.

Note that the PIA and AIME in the function above are annualized.

A.3.2 Social Security Benefits

A worker can start his Social Security benefits as early as age 62. If he claims benefits
based on his own earnings history, his benefits, sO

it , are a function of his age this period, ait ,
and his age and PIA at the time of claiming benefits, (ac

i ,ϒ
c
i ),

sO
it (ait ,ac

i ,ϒ
c
i ) =


2ϒc

i 0.933(65−ac
i ) i f 62 6 ac

i 6 65 & ac
i 6 ait ,

2ϒc
i 1.055min{(ac

i−65),5} i f ac
i > 65 & ac

i 6 ait ,

0 otherwise.

Note that ac
i 6 ait means spouse i has already claimed benefits before or at period t, and

ac
i > ait means spouse i has not claimed benefits before or at period t. In addition, each

period is two years. Thus, the benefits that spouse i receives during period t equal two
times his annual benefits.

If a worker’s spouse is alive (S−i,t = 1), the worker can claim spousal benefits as
early as age 62. If he claims spousal benefits at his normal retirement age (65) or older, the
spousal benefits equal one half of his spouse’s benefits. If he claims benefits before age 65,
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the benefits are reduced by 6.67% for every year before age 65. His spousal benefits, sS
it ,

are a function of his age this period, ait , his age at the time of claiming benefits, ac
i , and his

spouse’s benefits, sO
−i,t(a−i,t ,ac

−i,ϒ
c
−i),

sS
it(ait ,ac

i ;sO
−i,t) =

 1
2 sO
−i,t(a

c
−i,ϒ

c
−i,a−i,t)0.933max{(65−ac

i ),0} i f ac
i > 62 & ac

i 6 ait ,

0 otherwise.

If a worker’s spouse is dead (S−i,t = 0), the worker can claim survivor benefits. His
survivor benefits, sW

it , are calculated based on the deceased spouse’s basic benefits. If the
deceased spouse started collecting benefits before his death (ac

−i < aD
−i), his basic benefits

equal the benefits he receives. If the deceased spouse did not start collecting benefits before
his death (ac

−i > aD
−i), his basic benefits are calculated as if he claimed benefits at the time

of his death, or at age 62 if he died before 62. The PIA used in the calculation is his PIA at
the time of his death. Thus, the deceased spouse’s basic benefits, sD

−i, are a function of his
age and PIA at the time of death, (aD

−i,ϒ
D
−i), and his age and PIA at the time of claiming

benefits, (ac
−i,ϒ

c
−i),

sD
−i(a

D
−i,ϒ

D
−i,a

c
−i,ϒ

c
−i) =



2ϒc
−i0.933(65−ac

−i) i f 62 6 ac
−i 6 65 & ac

−i < aD
−i,

2ϒc
−i1.055min{(ac

−i−65),5} i f ac
−i > 65 & ac

−i < aD
−i,

2ϒD
−i0.933min{(65−aD

−i),3} i f aD
−i 6 65 & ac

−i > aD
−i,

2ϒD
−i1.055min{(aD

−i−65),5} i f aD
−i > 65 & ac

−i > aD
−i.

A survivor can claim survivor benefits as early as age 60. The full retirement age
for a survivor is age 66. If the survivor claims survivor benefits at his full retirement age
(66) or older, the survivor benefits equal the deceased spouse’s basic benefits. If he claims
benefits before age 66, the benefits are reduced by 6% for every year before age 66. If a
survivor is getting benefits (either his own or spousal benefits) when the other spouse dies,
he can switch to survivor benefits if they are higher than the benefits he is receiving now.
Thus, the worker’s survivor benefits, sW

it , are a function of his age this period, ait , his age
at the time of claiming survivor benefits, acW

i , and the deceased spouse’s basic benefits,
sD
−i(a

D
−i,ϒ

D
−i,a

c
−i,ϒ

c
−i),

sW
it (ait ,acW

i ;sD
−i) =

 sD
−i(a

D
−i,ϒ

D
−i,a

c
−i,ϒ

c
−i)0.94max{(66−ac

i ),0} i f acW
i > 60 & acW

i 6 ait ,

0 otherwise.

In summary, the Social Security benefits a worker receives, sit , depend on his own
benefits, sO

it (ait ,ac
i ,ϒ

c
i ), his spouse’s survival status, S−i,t , his spousal benefits, sS

it(ait ,ac
i ;sO
−i,t),

and his survivor benefits, sW
it (ait ,acW

i ;sD
−i),

sit = s(sO
it ,S−i,t ,sS

it ,s
W
it ) =

 max{sO
it (a

c
i ,ϒ

c
i ,ait),sS

it(ait ,ac
i ;sO
−i,t)} i f S−i,t = 1,

max{sO
it (a

c
i ,ϒ

c
i ,ait),sW

it (ait ,acW
i ;sD

−i)} i f S−i,t = 0.
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A.3.3 Pension Benefits

I model the pension benefits for DC and DB plans differently. If spouse i has a DC plan,
I assume that he withdraws the pension wealth when he retires, or at the early withdrawal
age if he retires earlier.5 His pension wealth in period t, bw

it , depends on pension wealth in
the last period, bw

i,t−1, and the pension accrual this period, bA
it ,

bw
it = (1+ r)bw

i,t−1 +bA
it ,

where r is the constant asset return rate,6 and bA
it is a function of his labor income, wit(1−

Lit), his contribution rate, ro
it , and his employer’s contribution rate, re

it ,

bA
it = wit(1−Lit)(ro

it + re
it).

Spouse i’s DC pension benefits in period t, bDC
it , are a function of his pension wealth this

period, bw
it , his age this period, ait , and his age at the time of his retirement, ar

i ,

bDC
it (bw

it ,ait ,ar
i ) =

 bw
it i f ait = ar

i ,

0 otherwise.

Computing the pension benefits for DB plan recipients requires detailed data on DB
plan characteristics, including normal and early retirement ages, job tenure, pensionable
salary, and the pension accrual rate which varies with job tenure. This information is often
missing.7 Even if it were in the data, a model that took into account all of these characteris-
tics would be computationally burdensome.8 To overcome this data problem and simplify
the model, following French and Jones (2011), I model a worker’s DB pension benefits,
bDB

it , as a function of his age this period, ait , and his age, PIA, and EPHI eligibility type at
the time of his retirement, (ar

i ,ϒ
r
i ,e

r
i ),

bDB
it (ait ,ϒ

r
i ,e

r
i ;γar

i ) =
2( ∑

k={R,T,N}
γ

ar
i

1,k1[er
i = k]+ γ

ar
i

2 ϒr
i + γ

ar
i

3 max{0,ϒr
i −9,999.6}+ γ

ar
i

4 max{0,ϒr
i −14,359.9}) i f ait > ar

i ,

0 otherwise,

5Most DC plan recipients withdraw their pension wealth when they retire, and treat their pension wealth
as household wealth.

6With a constant asset return rate, my model ignores an important feature of DC pension plans: the
employees incur all of the risk associated with the random asset return rate. Yet, the effects on retirement of
ignoring the randomness in asset return rates are very limited (explained in subsection 3.3).

7The HRS data matches with a data on pensions from a survey of the employers of HRS sample mem-
bers. The data on pensions provides crucial information to calculate DB plan benefits. However, some HRS
respondents do not have matched pension data, and this data can be used only on a computer that is not con-
nected to the internet. I cannot use this data because, to run parallel computing for my code, I need to use the
High-Performance Computing system at University of Virginia, and this requires internet access.

8In the literature on retirement, papers that address the difficulty in modeling the DB pension benefits
use different simplification methods. Some papers exclude people who are covered by a DB plan (Van der
Klaauw and Wolpin (2008) or by any pension plan (Benitez-Silva et al. (1999, 2004). Other papers use
data on pension plan characteristics to calculate DB plan benefits, and reduce the computational burden by
simplifying other parts of the model. For example, Gustman and Steinmeier (2008) simplify the model by
taking the spousal labor market decision as exogenous; and Fields and Mitchell (1984) simplify the model by
ignoring the variation in individuals’ earnings and years of service.
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where k denotes the category of EPHI eligibility type. Different types of EPHI eligibility
can be divided into three categories: (1) k = R (retiree insurance) if er

i equals (1,1,1,1),
(1,1,1,0), or (1,0,1,0); (2) k = T (tied insurance) if er

i equals (1,1,0,0), or (1,0,0,0);
and (3) k = N (no insurance) if er

i equals (0,0,0,0). The vector of parameters, γar
i =

(γ
ar

i
1,k,γ

ar
i

2 ,γ
ar

i
3 ,γ

ar
i

4 ), is the same across spouses but varies with retirement age, ar
i . Table

A3 lists the value of γar
i for different retirement ages.

Table A3: Value of γ by Retirement Age
Retirement Age γa

1,no γa
1,retiree γa

1,tied γa
2 γa

3 γa
4

59 1695 8446 5009 -0.1955 1.421 0.8186
60 1929 8854 5111 -0.1955 1.533 0.3831
61 2146 9222 5184 -0.1955 1.637 -0.023
62 2345 9551 5227 -0.1955 1.735 -0.399
63 2528 9840 5242 -0.1955 1.826 -0.747
64 2693 10090 5228 -0.1955 1.910 -1.065
65 2841 10300 5184 -0.1955 1.987 -1.354
66 2972 10470 5112 -0.1955 2.057 -1.613
67 3085 10600 5010 -0.1955 2.120 -1.843
68 3182 10690 4879 -0.1955 2.176 -2.043
69 3261 10740 4719 -0.1955 2.225 -2.214
70 3323 10760 4530 -0.1955 2.268 -2.356
71 3368 10730 4312 -0.1955 2.303 -2.468
72 3396 10660 4065 -0.1955 2.331 -2.551
73 3406 10550 3789 -0.1955 2.353 -2.605

Source: French and Jones (2011).

In summary, spouse i’s pension benefits, bit , are

bit = bDC
it 1[DC]+bDB

it 1[DB],

where 1[DC] is a variable indicating whether spouse i has a DB plan, and 1[DB] is a variables
indicating whether he has a DC plan.

A.4 Remaining Parts of The Model

A.4.1 Household Health Transitions

In a household, the two spouses’ health transitions may be interdependent because they
experience similar events that can affect health.9 I use a bivariate probit framework to
model the household health transitions.10 I model health transitions as a second channel

9As Wilson (2002) points out, the health status of the two spouses in a household often are interdependent
due to marriage sorting, similar lifestyles, or shared family income and health insurance coverage.

10Previous papers (e.g., Blau (1998) and French and Jones (2004)) that study the retirement behavior
of married couples ignore the possible correlation between the husband’s and wife’s health transitions and
calculate them separately.
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through which health insurance can affect retirement decisions.11 Health insurance (es-
pecially private health insurance) can affect health, and health is a factor that determines
spouses’ preference for leisure (equation (3.2)).12 Let an indicator variable, Hit , denote
whether spouse i has good health in period t. The latent variable, H∗it , represents the true
(continuous) health status of spouse i in period t. H∗it is modeled as a function of health
insurance coverage, Ii,t−1, health status, Hi,t−1,13 and demographic information, Xi,t−1, in
the last period, and an error term, uH

it ,

H∗it = H(Ii,t−1,Hi,t−1,Xi,t−1)+uH
it ,(

uH
mt

uH
f t

)
∼ N

[(
0
0

)
,

(
1 ρH

ρH 1

)]
.

A.4.2 Household Survival Rates

Similar to the way that I model household health transitions, I use a bivariate probit frame-
work to model household survival rates.14 Let an indicator variable, Sit , denote whether
spouse i is alive at period t. The latent variable, S∗it , measures the underlying continuous
propensity for spouse i to survive at period t. S∗it is modeled as a function of demographics,
Xi,t−1, and health status, Hi,t−1, in the last period, and an error term, uS

it ,
15

S∗it = S(Xi,t−1,Hi,t−1)+uS
it ,(

uS
mt

uS
f t

)
∼ N

[(
0
0

)
,

(
1 ρS

ρS 1

)]
.

The two error terms, uH
it and uS

it , denote spouse i’s idiosyncratic health shock and
mortality shock, respectively. One spouse’s health shock, mortality shock, and medical
expense-related shocks, (ϑit ,uit), might be correlated. Limitations in my data prevent me
from modeling the possible correlation between medical expense-related shocks and the

11Recall that the first channel (described in subsection 3.4) is that health insurance can affect retirement
decisions through spouses’ out-of-pocket medical expenditures, which are part of the household budget con-
straint.

12While Finkelstein et al. (2013) find no significant effects of Medicaid coverage on health, Dor et al.
(2006), Levy and Meltzer (2008), and Zimmer (2012) find positive effects of health insurance (especially
private health insurance) on health.

13It is more realistic to model the health transition, the utility flow, and total medical expenses as functions
of the true continuous health status, H∗it . However, it is difficult to incorporate H∗it in the model because: (1)
H∗it is not observed; and (2) health status becomes a continuous state variable. In the future, I can extend
my model using the technique developed in Brien et al. (2006), which shows how to use a modified GHK
algorithm (Geweke (1989), Hajivassiliou (1990), and Keane (1994)) to solve a dynamic structural model that
includes an unobserved continuous state variable.

14In the literature on married couples’ retirement (e.g., Blau and Gilleskie (2006) and Gustman and Stein-
meier (2004)), the husband’s and wife’s survival rates are calculated separately.

15Casanova (2010) assumes that the survival rate is a function of age and gender. French and Jones (2004)
model the survival rate as a function of previous health status and age.
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other two shocks.16 And I assume that a spouse’s health shock is independent from his life
shock. Ignoring the correlation between these two shocks may cause biased estimates.17

A.5 Employer-Provided Health Insurance Eligibility

In the HRS, the only people who are selected to be surveyed about their EPHI eligibility
are those covered by their own EPHI plan. Consequently, there is no information about the
EPHI eligibility of those who are covered by their spouse’s employer. Figure A1 shows
how the HRS surveys households about their health insurance eligibility.

Figure A1: Flowchart of Survey Questions about Health Insurance Eligibility in the HRS

To impute the EPHI eligibility for those who are not surveyed about their EPHI
eligibility, I establish a multivariate probit model of the observed EPHI eligibility and the

16The HRS data has no information on total medical expenses, and I use a different data set to estimate
medical expense-related equations, separately from estimating health transitions and survival rates (explained
in data section 4.1).

17If one spouse’s health shock and life shock are positively correlated, ignoring this correlation might un-
derpredict the probability of being alive in the next period. Then, the model might overpredict the household
savings. The overprediction of household savings may cause a downward bias in the estimate of risk aversion
parameter. In the health insurance literature, some papers (e.g., Blau and Gilleskie (2008) model the possi-
ble correlation between one’s health and life shocks, while others (e.g., Rust and Phelan (1997) ignore this
possible correlation.
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selection of reporting EPHI eligibility (equations (4.1)-(4.5)). The error terms in the five
equations are assumed to be multivariate normally distributed,

ωw1
it

ωw2
it

ωr1
it

ωr2
it

ωs
it

∼ N




0
0
0
0
0

 ,


1 ρ12 ρ13 ρ14 ρ15

ρ12 1 ρ23 ρ24 ρ25

ρ13 ρ23 1 ρ34 ρ35

ρ14 ρ24 ρ34 1 ρ45

ρ15 ρ25 ρ35 ρ45 1



.

I use married couples in the HRS to estimate the imputation model. In this sample,
each spouse’s likelihood contribution is the probability of having the EPHI coverage out-
come observed in the data. A coverage outcome includes two pieces of information: (1)
whether a spouse reports his EPHI eligibility; and (2) his EPHI eligibility type if he reports.
Table A4 defines the seven EPHI coverage outcomes observed in the data, using the five
binary variables, (ew1

it ,ew2
it ,er1

it ,e
r2
it ,e

s
it).

Table A4: EPHI Coverage Outcome
Outcome ew1 ew2 er1 er2 es

1 1 1 1 1 1
2 1 1 1 0 1
3 1 1 0 0 1
4 1 0 1 0 1
5 1 0 0 0 1
6 0 0 0 0 1
7 0

I calculate each spouse’s likelihood contribution using equations (4.1)-(4.5). Let
P1it , P2it , P3it , P4it , P5it , P6it , and P7it represent the probability of observing outcomes
1-7 for spouse i in period t, respectively,

P1it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 1,er1

it |[ew1
it =1] = 1,er2

it |[er1
it =1,ew2

it =1] = 1,es
it = 1]

=
´

D1

´
D2

´
D3

´
D4

´
D5 dG(ωw1

it ,ωw2
it ,ωr1

it ,ω
r2
it ,ω

s
it),

(A1)

P2it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 1,er1

it |[ew1
it =1] = 1,er2

it |[er1
it =1,ew2

it =1] = 0,es
it = 1]

=
´

D1

´
D2

´
D3

´ D4 ´
D5 dG(ωw1

it ,ωw2
it ,ωr1

it ,ω
r2
it ,ω

s
it),

(A2)

P3it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 1,er1

it |[ew1
it =1] = 0,es

it = 1]

=
´

D1

´
D2

´ D3 ´
D5 dG1,2,3,5(ω

w1
it ,ωw2

it ,ωr1
it ,ω

s
it),

(A3)

P4it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 0,er1

it |[ew1
it =1] = 1,es

it = 1]

=
´

D1

´ D2 ´
D3

´
D5 dG1,2,3,5(ω

w1
it ,ωw2

it ,ωr1
it ,ω

s
it),

(A4)

P5it = Pr[ew1
it = 1,ew2

it |[ew1
it =1] = 0,er1

it |[ew1
it =1] = 0,es

it = 1]

=
´

D1

´ D2 ´ D3 ´
D5 dG1,2,3,5(ω

w1
it ,ωw2

it ,ωr1
it ,ω

s
it),

(A5)
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P6it = Pr[ew1
it = 0,es

it = 1]
=
´ D1 ´

D5 dG1,5(ω
w1
it ,ωs

it),
(A6)

P7it = Pr[es
it = 0]

=
´ D5 dG5(ω

s
it),

(A7)

where D1 =−(ς1
w1Xd

it +ς2
w1XE

it ), D2 =−(ς1
w2Xd

it +ς2
w2XE

it ), D3 =−(ς1
r1Xd

it +ς2
r1XE

it ), D4 =

−(ς1
r2Xd

it +ς2
r2XE

it ), D5 =−(ς1
s Xd

it +ς2
s XE

it +ς3
s XE
−i,t), and G(·) is the joint distribution func-

tion of the five error terms. The term G(·) with subscript represents the joint distribution
function of a subset of the five error terms. For example, the term G1,2,3,5(·) represent the
joint distribution function of the 1st, 2nd, 3rd, and 5th elements of the five error terms.

Spouse i’s likelihood contribution in period t, Pit , is

Pit = P1
1[Outcome1]
it ·P2

1[Outcome2]
it ·P3

1[Outcome3]
it ·P4

1[Outcome4]
it

·P5
1[Outcome5]
it ·P6

1[Outcome6]
it ·P7

1[Outcome7]
it ,

where 1[Outcomek] is a variable indicating whether spouse i has outcome k = {1,2, ...,7} in
period t.

The likelihood function is

L(ς ,ρ) =
N
Π

i=1

T
Π

t=1
Pit .

Equations (A1)-(A6) show that calculating the likelihood contribution requires an
integration over the joint distribution of multiple error terms. Because evaluation of the
multidimensional integrals is not possible analytically or numerically, I use a GHK simula-
tor (Geweke (1989), Hajivassiliou (1990), Keane (1994)) to simulate the likelihood contri-
bution. Parameter estimates of the EPHI eligibility imputation model maximize the likeli-
hood function.

Table A5 lists the estimates of parameters associated with the explanatory variables
in the imputation model, ς . These estimates represent the correlation between the explana-
tory variables and the dependent variables. Individuals who work for bigger firms, have
a higher hourly wage, work longer hours per year, have longer tenure, or are eligible for
pension benefits, are more likely to be eligible for employer-provided working and retiree
insurance. They are also more likely to report their EPHI eligibility. Compared with wives,
husbands are more likely to be eligible for employer-provided working and retiree insur-
ance and to report their EPHI eligibility. Workers in good health are more likely to be
eligible for employer-provided insurance (especially for the retiree insurance) and to report
their EPHI eligibility. There are two possible reasons that cause the positive correlation
between health and being eligible for EPHI plans. First, individuals who have insurance
coverage might visit doctors more often and choose more health care treatments, and thus,
have better health. Second, individuals who care about health are more likely to have better
health, and they are more likely to choose a job that provides insurance coverage.
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Table A5: EPHI Eligibility Imputation Model Estimates
Variable ew1 ew2|[ew1=1] er1|[ew1=1] er2|[er1=1;ew2=1] es

Est. S.E. Est. S.E. Est. S.E. Est. S.E. Est. S.E.
Constant 0.65** 0.27 2.12*** 0.43 1.26*** 0.21 1.53*** 0.44 -0.23 0.23
Race

White (omitted)
Black -0.07 0.13 -0.09 0.17 -0.41*** 0.08 -0.10 0.13 -0.02 0.09
Other -0.32 0.21 -0.52** 0.22 0.04 0.12 0.03 0.24 0.08 0.18

Hispanic -0.06 0.17 0.13 0.23 -0.27*** 0.10 -0.16 0.19 -0.13 0.14
Firmsize

[1,24] (omitted)
[25,99] 0.05 0.09 0.19 0.16 0.02 0.07 -0.04 0.13 0.06 0.07
[100,499] 0.14 0.10 0.15 0.15 0.06 0.07 -0.15 0.13 0.16** 0.08
[500,+∞) 0.29** 0.12 0.12 0.17 0.03 0.07 0.001 0.14 0.22*** 0.09

Good Health 0.11 0.13 0.26 0.17 0.23*** 0.08 0.13 0.15 -0.11 0.10
Log(hourly wage) 0.42*** 0.07 0.16 0.14 0.26*** 0.05 0.41*** 0.12 0.03 0.06
Log(annual hours) 0.11* 0.06 -0.08 0.11 0.46*** 0.06 0.35*** 0.13 0.36*** 0.05
Tenure 0.18** 0.07 -0.13 0.14 0.02 0.06 0.04 0.11 0.16** 0.07
Pension 0.58*** 0.12 -0.11 0.19 -0.17** 0.08 -0.002 0.16 0.50*** 0.08
Tenure*Pension 0.02 0.09 0.21 0.16 0.19*** 0.06 0.08 0.11 -0.01 0.08
Region

Northeast (omitted)
Midwest -0.13 0.13 -0.13 0.19 0.04 0.08 -0.10 0.15 -0.16 0.10
South -0.17 0.12 -0.02 0.18 -0.07 0.07 -0.01 0.15 -0.06 0.09
West 0.14 0.12 -0.05 0.19 0.10 0.07 -0.07 0.14 0.05 0.09

Education
No degree (omitted)
High school 0.13 0.14 0.07 0.22 0.07 0.09 0.30** 0.15 0.08 0.10
College+ 0.01 0.16 0.02 0.25 0.08 0.10 0.29 0.18 0.02 0.12

Female -0.21** 0.09 -0.15 0.16 -0.19*** 0.05 -0.44*** 0.11 -0.43*** 0.08
Spouse Self-employed 0.08 0.09
Spouse Education

No degree (omitted)
High school -0.01 0.08
College+ -0.13 0.09

Spouse Full-Time -0.17** 0.07
Spouse Tenure -0.01 0.04
Spouse Tenure*Pension -0.07 0.04
Sample Size: N=4,354

Source: Health and Retirement Study;

Est. is short for Estimates, and S.E. is short for standard error;

*,**,*** represent the 10, 5, and 1 percentage significance level, respectively.

Table A6 lists the estimates of parameters in the covariance matrix of the five error
terms, ρ . Individuals who experience shocks that increase the probability of being eligible
for employer-provided working insurance also tend to experience shocks that increase the
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probability of being eligible for employer-provided retiree insurance and the probability of
reporting their EPHI eligibility. Individuals experience shocks that increase the probability
of being eligible for retiree insurance that cover themselves or their spouse also tend to
experience shocks that increase the probability of reporting their EPHI eligibility.

Table A6: Covariance Matrix Estimates
Parameter Estimate Std. Err.

ρ12 0.23 0.48
ρ13 0.92*** 0.37
ρ14 0.09 0.33
ρ15 1.61*** 0.59
ρ23 0.06 0.15
ρ24 0.58 0.46
ρ25 0.04 0.19
ρ34 0.01 0.46
ρ35 0.66*** 0.14
ρ45 0.67*** 0.18

Source: Health and Retirement Study;
*,**,*** represent the 10, 5, and 1 percentage
significance level, respectively.

A.6 Employer-Provided Health Insurance Plan Characteristics

Using the cell averages of EPHI plan characteristics to impute individual plan character-
istics creates a measurement error problem in my model. Tables A7 lists the 2002 EPHI
plan characteristics in the private sector by industry type and firm size, and Table A8 lists
the 2002 EPHI plan characteristics in the public sector. The numbers in the parentheses
are standard deviations associated with these averages. The high standard deviations show
that the plan characteristics within each cell are spread out over a wide range of values.
Thus, the observed cell averages of plan characteristics (also called the observed data) and
the true individual plan characteristics (also called the error-free data) may be significantly
different.

In my model, the measurement errors cause two problems. First, measurement
error may cause the estimates of the structural model to be inconsistent and biased. As
is well known (see Carroll et al. (2006) and Wooldridge (2010)), in linear regression, the
effect of measurement error is to bias the slope estimate in the direction of 0 (also called
attenuation bias). In my model, the effects of measurement error on model estimates are
more complex than the attenuation bias because my model is nonlinear. In my structural
model, the value function is a nonlinear function of parameters and plan characteristics,
and the likelihood function is a nonlinear function of value functions.18 This means that the

18The likelihood function is described in estimation section 5.2.
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Table A7: EPHI Characteristics in Private Sector (Year 2002)
Cells EPHI Characteristics

Family Coverage Single Coverage
Co-insurance Rate Premium Deductible Premium Deductible

Industry Firm Size Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.

Agric.,fish.,forest. <100 22.2% (3.2%) 1,182 (983) 1,699 (418) 435 (266) 743 (287)

≥100 16.7% (7.4%) 867 (894) 929 (399) 397 (284) 436 (229)

Mining and manufact. <100 16.8% (2.9%) 1,239 (309) 1,469 (402) 468 (133) 611 (97)

≥100 17.5% (0.9%) 921 (359) 778 (45) 485 (53) 375 (38)

Construction <100 17.3% (1.8%) 1,391 (361) 1,231 (140) 526 (105) 595 (77)

≥100 16.7% (2.3%) 1,586 (1,114) 1,195 (361) 540 (180) 513 (119)

Utilities and transp. <100 16.9% (4.5%) 1,151 (867) 1,075 (409) 508 (306) 610 (202)

≥100 17.2% (2.7%) 916 (510) 746 (198) 537 (117) 345 (72)

Wholesale trade <100 22.0% (6.7%) 1,643 (808) 1,533 (274) 428 (171) 697 (108)

≥100 15.9% (2.7%) 1,063 (687) 850 (129) 500 (59) 413 (37)

Fin. svs. and real estate <100 17.1% (2.9%) 1,580 (455) 1,350 (188) 356 (94) 602 (106)

≥100 18.3% (3.3%) 1,281 (380) 900 (127) 606 (63) 374 (37)

Retail trade <100 19.6% (1.3%) 1,582 (307) 1,386 (279) 602 (124) 608 (77)

≥100 17.2% (1.3%) 1,417 (453) 953 (138) 695 (43) 392 (33)

Professioal services <100 18.3% (1.8%) 1,341 (284) 1,353 (162) 404 (81) 582 (56)

≥100 16.5% (1.7%) 1,228 (454) 851 (154) 580 (67) 381 (51)

Other services <100 19.0% (1.6%) 1,330 (388) 1,361 (461) 566 (89) 560 (38)

≥100 17.6% (1.8%) 1,429 (402) 948 (134) 702 (71) 418 (45)

Source: Medical Expenditure Panel Survey, 2002

Table A8: EPHI Characteristics in Public Sector (Year 2002)
Family Coverage Single Coverage

Co-insurance Rate Premium Deductible Premium Deductible
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D.
18.4% (0.8%) 1,137 (77) 707 (50) 325 (44) 346 (21)
Source: Medical Expenditure Panel Survey, 2002

likelihood function is a nonlinear function of parameters and plan characteristics. Because
the parameter estimates are the values that maximize the likelihood function, the parameter
estimates can be expressed as

θ̂ = f (X1,Z2) (A8)

where X1 is a vector of variables without measurement error, and Z2 is a vector of observed
plan characteristics. Let X2 be a vector of plan characteristics in the error-free data, then Z2

can be expressed as
Z2 = X2 + e (A9)

where e represents the measurement error in plan characteristics. A second-order Taylor
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series expansion of f (X1,Z2) around Z2 at X2 is

f (X1,Z2)≈ f (X1,X2)+
∂ f (X1,Z2)

∂Z2
(Z2−X2)+

1
2
(Z2−X2)

′ ∂ 2 f (X1,Z2)

∂Z2∂Z ′2
(Z2−X2). (A10)

Assuming that θ̂ c = f (X1,X2) is a consistent estimate, then equation (A10) can be rewritten
as

θ̂ ≈ θ̂ c +
∂ f (X1,Z2)

∂Z2
e+

1
2

e
′ ∂ 2 f (X1,Z2)

∂Z2∂Z ′2
e. (A11)

Because the observed plan characteristics are the averages of the true plan characteristics,
E(e) = 0. Thus, plim ∂ f (X1,Z2)

∂Z2
e = 0 if e is uncorrelated with X1 and X2. Equation (A11)

shows that plim θ̂ = θ̂ c if the term e
′ ∂ 2 f (X1,Z2)

∂Z2∂Z′2
e equals zero. This term equals zero only

if ∂ 2 f (X1,Z2)

∂Z2∂Z′2
= 0. However, the term ∂ 2 f (X1,Z2)

∂Z2∂Z′2
is unlikely to equal zero because the func-

tion f (·) is unlikely to be linear in Z2. This means that the measurement errors in plan
characteristics cause inconsistent estimates.

The second problem caused by the measurement errors in my model is that the ob-
served data exhibit relationships not present in the error-free data. In the error-free data,
different plan characteristics are correlated. For example, a plan with a high premium usu-
ally has a low deductible, whereas a plan with a low premium usually has a high deductible.
The relationships between different plan characteristics are nonlinear. Assuming that the in-
surance market is competitive, and an insurance company adapts plan characteristics to gain
zero profit, then the relationships between different plan characteristics can be expressed as

Γ = (1−Λ)(m(Γ,Λ,Ξ)−Ξ). (A12)

Variables Γ, Λ, and Ξ represent the premium, the co-insurance rate, and the deductible,
respectively, and m(·) represents the total medical expenses, which are a function of plan
characteristics. The derivative of the premium with respect to the deductible is

∂Γ

∂Ξ
= (1−Λ)

(
∂m(Γ,Λ,Ξ)

∂Ξ
−1
)
. (A13)

Equation (A13) shows that, if the total medical expenses are nonlinear in the deductible,
then the premium is nonlinear in the deductible. Next, I use a simple example to show
that the total medical expenses are nonlinear in the deductible. I assume that individuals
choose their total medical expenses, m, and consumption, C, to maximize their utility. An
individual’s optimization problem is

max U(m(Γ,Λ,Ξ),C) (A14)
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s.t.

 y > m+C i f m 6 Ξ,

y > Ξ+Λ(m−Ξ)+C i f m > Ξ,

where y represents income. The First Order Condition (FOC) is

U1(m,C) =

 U2(m,C) i f m 6 Ξ,

ΛU2(m,C) i f m > Ξ.
(A15)

Equation (A15) shows that the utility function, U(·), is nondifferentiable in total medi-
cal expenses. This nondifferentiability implies that m might be nondifferentiable in Ξ.
This equation also shows that the relationship between m and C depends on U1(m,C) and
U2(m,C), and thus, the relationship is unlikely to be linear. In summary, the total medical
expenses, m, are likely to be nonlinear and nondifferentiable in Ξ. Therefore, as equation
(A10) shows, the premium, Γ, is also likely to be nonlinear and nondifferentiable in the
deductible, Ξ. Let

Γ = g(Ξ) (A16)

represent the relationship between the premium and the deductible. The nonlinear relation-
ship between the premium and the deductible means that g(·) is a nonlinear function. Let
Γ∗ and Ξ∗ represent the observed premium and deductible. Because the plan characteris-
tics in the observed data are the averages of the true plan characteristics, Ξ∗ and Γ∗ can be
expressed as

Ξ∗ =
´

ΞdFΞ(Ξ),

Γ∗ =
´

g(Ξ)dFΞ(Ξ).
(A17)

where FΞ(Ξ) is the distribution of the deductible in the error-free data. The nonlinearity in
g(·) implies that ˆ

g(Ξ)dFΞ(Ξ) 6= g(
ˆ

ΞdFΞ(Ξ)). (A18)

Equation (A15) implies that
Γ
∗ 6= g(Ξ∗). (A19)

Equations (A13) and (A16) show that the relationships between the true plan characteristics
are different from the relationships between the observed plan characteristics.19

I do not address these measurement error problems in this paper, but future analysis
of these problems would be worthwhile.

19Carroll et al. (2006) conclude that one of the potential effects of measurement error is that the observed
data exhibit relationships not present in the error-free data.

16



A.7 Wage Imputation Model Estimates

I use a wage equation to impute annual wage for spouses whose wage cannot be observed
in the HRS. I model the log real annual wage in period t as

ln(wit) = β
wXw

it +uit (A20)

where Xw
it is a vector of explanatory variables (including age, gender, education, and an-

nual working hours), and uit ∼ N(0,σ2
u ) is an error term. Simultaneously estimating this

wage equation and my structural model is computationally burdensome. This is because
including the wage equation increases the number of parameters, and the computational
time increases more than linearly in the number of parameters.

Due to this computational burden, I estimate the wage equation separately from my
structural model. One resulting problem is that the error term in the wage equation, uit ,
might be correlated with the error terms (e.g., the idiosyncratic shock ιdt) in my structural
model that affect individuals’ retirement decisions. Ignoring this correlation causes incon-
sistent estimates. To capture the correlation between the error that affects the log wage and
the error that affects the labor supply, I use a probit framework to model the probability of
working. Let an indicator variable, Dit , denote whether spouse i is working in period t. The
latent variable, D∗it , is modeled as

D∗it = γ
DXD

it + εit (A21)

where XD
it is a vector of explanatory variables (including age, race, gender, and marital sta-

tus) and εit ∼ N(0,1). The wage imputation model consists of equations (A20) and (A21).
The exclusion restriction is that marital status is assumed to affect only the probability of
working (equation (A21)) and not affect the real wage (equation (A20)).

I use the two-step Heckman selection method to estimate the wage imputation
model. The Heckman method assumes that(

uit

εit

)
∼ N

[(
0
0

)
,

(
σ2

u ρuσu

ρuσu 1

)]
. (A22)

Under this assumption, the log real wage conditional on working is

ln(wit) |Dit=1 = β
wXw

it +ρuσuλ (γDXD
it )+νit (A23)

where λ (γDXD
it ) is the inverse Mills ratio evaluated at γDXD

it and νit is

νit = uit−E[uit |Dit = 1]
= uit−ρuσuλ (γDXD

it ).

Following Heckman (1979), in the first step, I use a probit regression to estimate γD in
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equation (A21). In the second step, I compute λ ( ˆγDXD
it ) and I use a least squares regression

to estimate equation (A20). Although including the probit equation reduces the asymptotic
bias of the estimate of β w, the two-step Heckman estimates are still inconsistent because the
probit equation differs from my structural model of individuals’ labor supply (or retirement)
behavior.

I use individuals in the HRS to estimate the wage imputation model. The sample
size to estimate the first-stage probit regression is 163,538 person-periods, and the sample
size to estimate the second-stage regression is 33,721 person-periods. Table A9 lists the
estimates of these two stages. Using the resulting estimates, I compute the expectation of
wage conditional on working, which I use as my annual wage data.

Table A9: Annual Wage Imputation Model Estimates
Probit (1st Stage) Wage (2nd Stage)

Variable Est. S.E. Est. S.E.
Age 0.388*** 0.101 0.939*** 0.049
Age2 -0.032*** 0.008 -0.094*** 0.004
Education

No degree (omitted)
High school degree 0.742*** 0.035 0.254*** 0.011
College degree+ 1.421*** 0.045 0.739*** 0.013

Race
White (omitted)
Black -0.150*** 0.041 -0.059*** 0.011
Other -0.280*** 0.067 -0.044** 0.017

Male 0.345*** 0.043 0.451*** 0.008
Married -0.308*** 0.027
Married*Male 0.646*** 0.045
Experience 0.346*** 0.011
Inverse Mills ratio 0.003 0.006
Constant 2.944*** 0.319 1.745*** 0.149
Sample Size N=163,538 N=33,721
Source: Health and Retirement Study;
Est. is short for Estimate, and S.E. is short for standard error;
Age equals real age divided by 10; Experience equals the log of working years;
*,**,*** represent the 10, 5, and 1 percentage significance level, respectively.

The coefficients of age, education, race, gender, and marital status are statistically
significant. Before age 60, aging significantly increases the probability of working, while
after age 60, aging significantly decreases the probability of working. Before age 53, aging
significantly increases annual wage, while after age 53, aging significantly decreases annual
wage. Having more education significantly increases annual wage and the probability of
working. Whites and males are more likely to choose to work and have higher wages than
non-whites and females, respectively. Being married significantly increases the probability
of working for males and significantly decreases the probability of working for females.
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Having more working experience significantly increases annual wage.

A.8 AIME and Earnings History

In this subsection, I first describe the function that use a worker’s current AIME to update
his AIME in the next year. Then, I present the estimates of the modified AR(1) process
used to derive each spouse’s past earnings history.

A.8.1 AIME Updating Function

I can calculate each spouse’s AIME in the first wave (year 1992) using the labor income
history up to 1992. To calculate the AIME for future years, following French and Jones
(2011), I assume that spouse i’s annualized AIME in the next year is a function of his
annualized AIME, ∆it , labor income, witLit , and age, ait , in the current year,

∆i,t+1 = (1+g1[ait≤60]Lit)∆it

+
1
35

max{0, witLit−αait (1+g1{ait≤60})∆it},

where g denotes the average real wage growth rate, set to 0.016. The parameter αait is the
same across people but varies with age. Table A10 lists the value of αait for different ages.

Table A10: Value of αait by Age
Age αait

56 0.107
57 0.213
58 0.320
59 0.427
60 0.534
61 0.570
62 0.589
63 0.600
64 0.608
65 0.614
66 0.616
67 0.617
68 0.618
69 0.618
70 0.619
71 0.619

Source: French and Jones (2011).
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A.8.2 Earnings History

To calculate the AIME in 1992, I need a worker’s earnings history up to 1992. Due to the
HRS data usage restriction of individuals’ earnings history,20 I impute the earnings history
prior to 1992 for each spouse in my sample. I construct a worker’s earnings history in two
steps. In the first step, the log real labor income in period t is modeled as21

ln(wit) = ρ
Lln(wi,t−1)+θ

LXL
it + ε

L
it (A24)

where XL
it is a vector of explanatory variables (including education, race, and age) and εL

it

is white noise.22 To estimate equation (A24), I use the Panel Study of Income Dynamics
(PSID), which is a longitudinal household survey that began in 1968. The PSID collects
data about employment and income for individuals in a nationally representative sample
of households. I include husbands and wives who were between the ages of 20 and 40 in
1968, and I track their earnings history until 1988. I use this sample to estimate equation
(A24) for husbands and wives separately.23

In the second step, given the estimates of equation (A24) and each spouse’s annual
labor income in 1992, I derive a spouse’s earnings history backwards from 1992 to the year
when he was 20 years old.24 With the constructed earnings histories in hand, I compute the
annualized AIME in 1992 for each spouse in my sample.25

Table A11 shows the estimates of this modified AR(1) process (equation (A24)).
Labor incomes are highly persistent, and the level of persistence is around 0.7. In addition,
age, education, and race have significant effects on predicting labor income. Before age
60, aging significantly increases the husbands’ labor income; while after age 60, aging sig-
nificantly decreases the husbands’ labor income. Age has similar effects on predicting the
wives’ labor income; the age cutoff for the wives is 50. Having more education significantly
increases labor income. Whites have higher labor incomes than non-whites.

In the literature on labor income processes, there are two leading views about the
nature of the income process. As summarized in Guvenen (2009), the first view (the "Het-
erogeneous Income Profile" (HIP) model) is that individuals are subject to shocks with

20For an explanation of the data usage restriction, see data section 4.1.
21Real labor income equals nominal labor income divided by the Consumer Price Index (CPI). The refer-

ence base for the CPI is 1992.
22Most literature about the labor income process models labor income as a function of both explanatory

variables and an income shock that follows an AR(1) process. See Guvenen (2009) for a summary.
23I cannot observe how much labor income non-working people would have earned. Thus, to estimate the

modified AR(1) process, I include only the labor income of those who are working. However, this introduces
a selection problem, which I ignore here.

24To derive a spouse’s earnings history using equation (A24), I need to know the variables in XL
it for years

prior to 1992. The only variable in XL
it that changes over time is age, which can be easily calculated for these

years.
25If a spouse is older than 55 in 1992, then the AIME as of 1992 is the average monthly labor income

during his 35 highest earnings years. If one spouse is younger than 55 in 1992, then his earnings history is
less than 35 years, and his AIME is the sum of his labor income over the history divided by 35×12.
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Table A11: Modified AR(1) Process Estimates
Husband Wife

Variable Est. S.E. Est. S.E.
Labor Income next period 0.706*** 0.003 0.679*** 0.007
Age 0.024*** 0.001 0.009*** 0.002
Age2 -0.0002*** 0.00001 -0.00009*** 0.00002
Education

No degree (omitted)
High school degree 0.060*** 0.004 0.077*** 0.009
College degree+ 0.127*** 0.005 0.174*** 0.015

Race
White (omitted)
Black -0.068*** 0.004 -0.046*** 0.009
Other -0.022** 0.009 -0.054* 0.031

Constant 0.96*** 0.025 1.213*** 0.057
Sample Size N=51,491 N=10,473
Source: Panel Study of Income Dynamics;
Est. is short for Estimate, and S.E. is short for standard error;
*,**,*** represent the 10, 5, and 1 percentage significance level, respectively.

modest persistence, but face life-cycle profiles that are individual-specific. The second
view (the "Restricted Income Profile" (RIP) model) is that individuals are subject to ex-
tremely persistent shocks, but face similar life-cycle income profiles. The RIP models get
higher estimates of the level of persistence than the HIP models.26 Because I do not include
the individual-specific effect in equation (A24), I may overestimate the level of persistence
of a worker’s income and underestimate the consistent difference between two workers’
labor incomes over time. However, for each spouse in each year, the imputed labor income
using equation (A24) is still a mostly accurate prediction of the real labor income. This is
because the individual-specific effect on labor income is absorbed in the estimate of ρL.

Table A12 compares the sample statistics of husbands’ annualized AIME27 in 1992
using my imputed earnings histories and those calculated by French and Jones (2011), who
use the restricted SSER file. Compared to the annualized AIME calculated using the SSER
file, the annualized AIME that I calculate for husbands has similar sample means and has
smaller standard deviations.28 The smaller standard deviations might be because I ignore
the individual-specific effect in equation (A24).29 Yet, it is still reasonable to use equation

26In HIP models, the estimated level of persistence in income shocks ranges from 0.5 to 0.7 (Lillard and
Weiss (1979), Baker (1997), and Haider (2001)); in RIP models, the estimated level of persistence is close to
1 (MaCurdy (1982), Abowd and Card (1989), and Topel and Ward (1992)).

27Annualized AIME equals AIME times 12 months.
28The only exception is that, for husbands in the none category (who have no insurance), I calculated a

larger sample mean of AIME than French and Jones (2011). This might be because, in my sample, many
husbands who have no EPHI are self-employed, and self-employed workers have higher labor income than
salary workers (Hochguertel (2015).

29For husbands in my sample, 27.6% of the standard deviation of the AIME is due to the error, and 72.4%
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(A24) because the purpose of the process is to impute annual labor income prior to 1992
but not to explain the nature of the income process.

Table A12: Sample Statistics for Initial Annualized AIME
EPHI Eligibility Category Imputed Earnings History SSER File

Mean Std. Dev. Mean Std. Dev.
Retiree 24.8 (5.0) 24.9 (9.1)

Tied 24.6 (4.5) 24.9 (8.6)
None 21.9 (4.3) 16.0 (9.0)

Note: Numbers are measured in thousands of dollars

A.9 Bargaining Power

I describe how to use the method developed by Friedberg and Webb (2006) to predict the
husband’s bargaining power relative to that of his wife. Let γn be the true bargaining power
in household n and assume that it is a function of household observables X γ

n . Let Rni rep-
resents spouse i’s response to the survey question, and let R∗ni be the underlying continuous
measure of Rni, which depends on the true bargaining power γn and some reporting bias
β

γ

i X γ
n ,

γn = αγX γ
n +uγ

n,

R∗ni = γn +β
γ

i X γ
n +uγ

ni = (αγ +β
γ

i )X
γ
n + ũni i ∈ {m, f}.

Based on the answer to the survey question, Rni, is defined as below

Rni =


1 i f husband has f inal say

0 i f about equal

−1 i f wi f e has f inal say.

Since R∗ni is the underlying continuous measure of Rni, the definition of Rni can be
rewritten as

Rni =


1 i f R∗ni > µ1

0 i f µ0 < R∗ni ≤ µ1

−1 i f R∗ni ≤ µ0.

Assume that ũni = (uγ

ni + uγ

i ) ∼ N(0, σ2
γ ), and cor(ũnm, ũn f ) = ργ . The parame-

ters (αγ +β
γ

i ),σγ ,ργ ,µ0,µ1 are identified by estimating the bivariate ordered probit model.
Then, αγ can be estimated after imposing the restriction β

γ
m +β

γ

f = 0. With the estimated
αγ , I can predict the value of the bargaining power γ̂n = α̂γX γ

n .

is due to the variation in XL.
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For each household in my sample, I impute the husband’s bargaining power relative
to that of his wife using the explanatory variables and parameter estimates provided by
Friedberg and Webb (2006).

A.10 Computation of Optimal Consumption

Given any dt , optimal household consumption, denoted as C∗(dt), satisfies the First Order
Condition (FOC) of equation (5.2),

∂U(dt ,Ct ;zt)

∂Ct
+β

∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}
∂At+1

∂At+1(Ct)

∂Ct
= 0. (A25)

The functional form of household utility flow (equations (3.1)-(3.2)) implies that ∂U(dt ,Ct ;zt)
∂Ct

= 1
Cα

t
. Similarly, the budget constraint (equation (3.4) implies that ∂At+1(Ct)

∂Ct
= −1. Thus,

the FOC can be rewritten as

Ct =

{
β

∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}
∂At+1

}−(1/α)

. (A26)

Computing the term ∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}
∂At+1

analytically is computationally burden-
some. My approach is to use several linear splines to approximate Em{E[V (zt+1)|zt , dt ,Ct ,mt ]}.
Then, instead of computing ∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}

∂At+1
at every point of At+1, I compute the

slope of each linear spline.
I first discretize the household assets using five points (A1,A2,A3,A4,A5).30 Then, I

calculate Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]} at these five points. Let

Dq(dt) = Em{E[V (zt+1(Aq))|zt ,dt ,Ct ,mt ]} q = {1,2,3,4,5} (A27)

denote the value of Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]} when At+1 = Aq. Therefore, the slope of
the linear spline that connects Dq and Dq+1 is

Sq(dt) =
Dq+1(dt)−Dq(dt)

Aq+1−Aq q = {1,2,3,4}. (A28)

For each Sq(dt), there exist corresponding assets, denoted as At+1(dt ,q). If At+1(dt ,q) is
located inside of [Aq,Aq+1], I replace the term ∂Em{E[V (zt+1)|zt ,dt ,Ct ,mt ]}

∂At+1
in the FOC (equation

(A26)) with Sq(dt). The optimal household consumption for the qth spline, conditional on
dt , is

C(dt ,q) = {βSq(dt)}−(1/α) . (A29)

30These five points are defined by the mean, mA, and the standard deviation, stdA, of the distribution of the
household assets observed in the first wave: A1 = mA−2stdA, A2 = mA− stdA, A3 = mA, A4 = mA + stdA, and
A5 = mA +2stdA.
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If At+1(dt ,q) is located outside of [Aq,Aq+1], I update At+1(dt ,q) with Aq or Aq+1,
whichever is closer to At+1(dt ,q). Given the updated At+1(dt ,q), I then update C(dt ,q) in
equation (A29) with the amount of consumption that satisfies the household budget con-
straint.31 I derive C(dt ,q) for each of the four splines, and the optimal household consump-
tion, conditional on dt , is

C∗(dt) = argmax
Ct∈{C(dt ,q),q=1,...,4}

{v(dt ,Ct ; zt)}. (A30)

A.11 Identification of First Stage Parameters

A.11.1 Medical Expenditure Function Parameters

Recall that two independent processes are modeled to determine each spouse’s total med-
ical expenditures: (1) whether he has positive medical expenses; and (2) the amount of
total medical expenses conditional on having positive medical expenses. I use a Bivariate
Probit framework to model the first process. Let Pit be a binary variable indicating whether
spouse i has positive total medical expenses in period t. As described in model section 3.4.2
(equation (3.8)), the latent variable, P∗it , is modeled as

P∗it = ξ
i
1Iit +ξ

i
2Hit +ξ

i
3Lit +ξ

i
4Xit +ϑit , (A31)(

ϑmt

ϑ f t

)
∼ N

[(
0
0

)
,

(
1 ρϑ

ρϑ 1

)]
.

The parameters associated with the explanatory variables, ξ i, are identified by the
co-variation in whether spouse i has positive medical expenses and the explanatory vari-
ables, (Iit ,Hit ,Lit ,Xit). The correlation between the two spouses’ error terms, ρϑ , is identi-
fied by the co-variation in the residuals of the two spouses’ probits.

In the second process, the log of positive total medical expenditures, ln(mP
it), is mod-

eled as a function of the four components used in the first process,
−→
Xit = (Iit ,Hit ,Lit ,Xit),

and an idiosyncratic shock, uit . Additionally, I assume that the vector of explanatory vari-
ables,

−→
Xit , can affect both the mean, µ(·), and the variance, σ(·), of ln(mP

it). Thus, ln(mP
it)

is modeled as (equation (3.9))

ln(mP
it) = µ(

−→
Xit)+σ(

−→
Xit)uit , (A32)(

umt

u f t

)
∼ N

[(
0
0

)
,

(
1 ρu

ρu 1

)]
,

31Although the introduction of the spline function simplifies the computation of the optimal consumption,
it creates kink points in the value function. See section 5.2.4 for a discussion about the estimation problem
caused by these kinks.
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where
µ(
−→
Xit) = χ

i
1Iit +χ

i
2Hit +χ

i
3Lit +χ

i
4Xit , (A33)

σ(
−→
Xit) = π

i
1Iit +π

i
2Hit +π

i
3Lit +π

i
4Xit . (A34)

The parameters that affect the mean of the log of total medical expenditures, χ i, are
identified by the co-variation in the log of total medical expenditures and the explanatory
variables. The parameters that affect the volatility of the log of total medical expenditures,
π i, are identified by the co-variation in the two spouses’ squared residuals of the log of total
medical expenditures and the explanatory variables. With the estimated parameters π̂ i and
the vector of observed explanatory variables

−→
Xit , I can calculate each spouse’s preference

for medical expenditure shocks, σ(π̂ i−→Xit).32 The co-variation in the two spouses’ residuals
divided by σ(π̂ i−→Xit) identifies the correlation between the two spouses’ error terms, ρu.

A.11.2 Health Transitions and Survival Rates Parameters

In the household health transitions function, Hit is a binary variable that indicates whether
spouse i is in good health in period t. As described in model section 3.6.1, the latent
variable, H∗it , is modeled as

H∗it = κ
i
1Ii,t−1 +κ

i
2Hi,t−1 +κ

i
3Xi,t−1 +uH

it , (A35)(
uH

mt

uH
f t

)
∼ N

[(
0
0

)
,

(
1 ρH

ρH 1

)]
.

The parameters associated with the explanatory variables, κ i, are identified by the co-
variation in the health status in this period, Hit , and the explanatory variables in the last
period, (Ii,t−1,Hi,t−1,Xi,t−1). The correlation between the two spouses’ health shocks, ρH ,
is identified by the co-variation in the residuals of the two probits.

In the household survival rates function, Sit is a binary variable that indicates whether
spouse i is alive in period t. As described in model section 3.6.2, the latent variable, S∗it , is
modeled as

S∗it = ζ
i
1Hi,t−1 +ζ

i
2Xi,t−1 +uS

it , (A36)(
uS

mt

uS
f t

)
∼ N

[(
0
0

)
,

(
1 ρS

ρS 1

)]
.

The parameters associated with the explanatory variables, ζ i, are identified by the
co-variation in the survival status in this period and the explanatory variables in the last pe-
riod, (Hi,t−1,Xi,t−1). The correlation between the two spouses’ life shocks, ρS, is identified
by the co-variation in the residuals of the two probits.

32σ(
−→
X π) shows that spouses who have different values of explanatory variables,

−→
X , react to the medical

expenditure shock differently.

25



A.12 First Stage Parameter Estimates

I first present parameter estimates that affect the distribution of total medical expenses (see
A.12.1). Then, I list parameter estimates that determine health transitions (see A.12.2).
Lastly, I discuss parameter estimates that determine survival rates (see A.12.3).

A.12.1 Total Medical Expenditure Parameter Estimates

As described in model section 3.4.2, I assume that each spouse’s total medical expenses
are generated by two separate processes: (1) whether each spouse has zero or positive total
medical expenses (equation (3.8)); and (2) the amount of total medical expenditures condi-
tional on having positive total medical expenditures (equation (3.9)). Tables A13 and A14
present estimates of parameters in the first and the second processes, respectively. In Table
A13, the binary (0/1) dependent variable equals 1 if a spouse has zero total medical ex-
penses. In Table A14, the dependent variable is the log of positive total medical expenses,
which is modeled as the sum of a mean function and a standard deviation function (equa-
tions (A32)-(A34)). The sign of parameters are as expected, and most of the estimates are
statistically significant. To put the size of the estimates into perspective, I compute the
AME (average marginal effect) for each of the variables.

The effects of health status, health insurance coverage, and employment status are
of particular interest. The estimates of the "Good Health" parameters indicate that being
in good health increases the probability of having zero total medical expenses. It also
decreases the mean and the variance of the distribution of the log positive medical expenses.
The AMEs of the "Good Health" variable show that, on average, being in good health
increases the probability of having zero medical expenses by 10.1 and 6.7 percentage points
for husbands and wives, respectively. Additionally, it decreases the expectation of positive
total medical expenses by $6,494.7 and $5,063.6 for husbands and wives, respectively.33

The estimates of health insurance coverage parameters imply that spouses who have
insurance coverage (either public or private) are more likely to have positive medical ex-
penses than those who have no insurance. The distribution of the log of positive total
medical expenses for those who have insurance has larger mean and variance than that for
those who have no insurance. For example, the AMEs of the "Private HI" variable show
that, on average, compared to having no health insurance coverage, having private cover-
age decreases the probability of having zero medical expenses by 8.5 and 5.3 percentage
points for husbands and wives, respectively. It also increases the expectation of positive
total medical expenses by $1,708.6 and $1,307.1 for husbands and wives, respectively.

The estimates of the "Full-time Work" parameters indicate that, on average, full-
time workers are more likely to have zero total medical expenses than retirees. The distri-

33Positive total medical expenses are the amount of total medical expenses conditional on having positive
medical expenses.
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Table A13: Parameter Estimates For The Probability Of Having Zero Total Medical Ex-
penses

Husband’s Equation Wife’s Equation
Variable Estimate S/E AME Estimate S/E AME
Age/10 Slope -0.004 -0.001

Age≤64 -0.50*** 0.03 -0.45*** 0.03
Age≥65 -0.03 0.05 0.11 0.09

Hispanic 0.35*** 0.04 0.058 0.29*** 0.05 0.032
Good Health 0.67*** 0.05 0.101 0.71*** 0.07 0.067
Full-time Work 0.26*** 0.05 0.062 0.22*** 0.07 0.046
Family Assets∗10−6 -3.29*** 0.36 -0.566 -2.37*** 0.45 -0.241
Race (White is omitted)

Black 0.32*** 0.05 0.051 0.21*** 0.06 0.024
Other 0.01 0.03 0.001 0.02 0.04 0.002

Education (less than high school is omitted)
High school -0.19*** 0.04 -0.027 -0.13*** 0.05 -0.014
College and above -0.37*** 0.05 -0.057 -0.33*** 0.06 -0.033

Health Insurance (having no insurance coverage is omitted)
Public HI -0.12** 0.06 -0.048 0.03 0.07 -0.015
Private HI -0.46*** 0.04 -0.085 -0.48*** 0.05 -0.053

Constant 1.35*** 0.17 0.51*** 0.19
Correlation Coefficient 0.37*** 0.02
Note: 1) *, **, and *** represent 10, 5 and 1 percent significance, respectively;

2) the columns labelled AME list average marginal effects of variables on the probability of
having zero total medical expenses;
3) the AME of the "Age/10 Slope" is the AME of increasing age by 1 year;
4) the AME of the "Family Assets" is the AME of increasing assets by 1%.

bution of the log of positive total medical expenses for full-time workers has smaller mean
and variance than the distribution for retirees. The AMEs of the "Full-time Work" variable
show that, on average, working full-time increases the probability of having zero total med-
ical expenses by 6.2 and 4.6 percentage points for husbands and wives, respectively. It also
decreases the expectation of total medical expenses by $1,947.6 and $1,599.2 for husband
and wives, respectively.

A.12.2 Health Transitions Parameter Estimates

Recall that I use a bivariate probit framework to model health status in the next period
as a function of current health insurance coverage, health status, age, race, and education
degree. Table A15 presents the estimates of parameters that affect health transitions and
the AME for each of the variables. Note that I include health status this period as a factor
that affects health status next period. Thus, health transition is the probability of being
in good health next period conditional on health status this period. The effects of current
health status and health insurance coverage are of particular interest. The AMEs of the
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Table A14: Parameter Estimates For Positive Total Medical Expenses
Mean Function(µ) S.D. Function(σ ) AME

Variable Estimate S/E Estimate S/E
Husband’s Equation
Age/10 Slope 60.8

Age≤64 0.37*** 0.02 -0.20*** 0.02
Age≥65 0.06 0.04 0.04* 0.02

Hispanic -0.22*** 0.05 -0.06* 0.03 -1,522.3
Good Health -0.97*** 0.04 -0.02 0.02 -6,494.7
Full-time Work -0.25*** 0.04 -0.07*** 0.02 -1,947.6
Family Assets*10−6 0.84*** 0.32 -0.15 0.19 3,367.2
Race (White is omitted)

Black -0.18*** 0.05 -0.002 0.03 -813.8
Other 0.30 0.03 0.01 0.02 1,803.7

Education (less than high school is omitted)
High school 0.31*** 0.04 -0.10*** 0.03 816.4
College and above 0.40*** 0.04 -0.18*** 0.03 644.4

Health Insurance (having no insurance coverage is omitted)
Public HI 0.38*** 0.04 0.14*** 0.03 2198.1
Private HI 0.48*** 0.04 -0.006 0.02 1708.6

Constant 5.09*** 0.15 2.72*** 0.11
Wife’s Equation
Age/10 Slope 38.9

Age≤64 0.22*** 0.02 -0.24*** 0.02
Age≥65 0.04 0.04 0.08*** 0.03

Hispanic -0.28*** 0.04 0.004 0.03 -1,061.1
Good Health -0.86*** 0.03 -0.04* 0.02 -5,063.6
Full-time Work -0.36*** 0.04 0.002 0.02 -1,599.2
Family Assets*10−6 1.7*** 0.26 -1.04*** 0.13 1,142.9
Race (White is omitted)

Black -0.22*** 0.05 0.10*** 0.03 -270.9
Other 0.37*** 0.02 0.03* 0.01 1,813.7

Education (less than high school is omitted)
High school 0.26*** 0.04 0.02 0.02 1,160.1
College and above 0.25*** 0.04 -0.03 0.02 809.2

Health Insurance (having no insurance coverage is omitted)
Public HI 0.30*** 0.04 0.17*** 0.02 1,867.3
Private HI 0.59*** 0.04 -0.12*** 0.02 1,307.1

Constant 5.98*** 0.13 2.76*** 0.10
Correlation Coefficient 0.13*** 0.01
Note: 1) *, **, and *** represent 10, 5 and 1 percent significance, respectively;

2) the column labelled AME lists average marginal effects of variables on the
expected positive total medical expenses, which equal exp{µ +0.5σ2}.
3) the AME of the "Age/10 Slope" is the AME of increasing age by 1 year;
4) the AME of the "Family Assets" is the AME of increasing assets by 1%.
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"Good Health" variable show that, on average, improving health status from bad to good
increases the probability of being in good health next period by 34.1 and 33.1 percentage
points for husbands and wives, respectively. Compared to people who lack health insurance
coverage, especially for those under age 65, being covered by public health insurance, on
average, decreases the probability of being in good health next period by 14.6 and 11.9
percentage points for husbands and wives, respectively. This might be because people who
are under age 65 and have access to public health insurance usually have poor health, and
their poor health either due to disability or lack of medical treatment (as a result of low
income). By contrast, compared to people who have no health insurance, being covered
by private health insurance increases the probability of being in good health next period by
1.8 and 2.5 percentage points for husbands and wives, respectively. This might be because
people who have private health insurance usually work full-time and have a better financial
situation, which makes them more likely to receive better health care, and thus makes them
more likely to be in good health next period.

Table A15: Health Transitions Parameter Estimates
Husband’s Equation Wife’s Equation

Variable Estimate S/E AME Estimate S/E AME
Age 0.004 0.004

Age/10 0.19** 0.09 0.23*** 0.08
(Age/10)2 -0.03*** 0.01 0.006 0.09

Hispanic -0.23*** 0.03 -0.052 -0.33*** 0.03 -0.064
Good Health 1.47*** 0.02 0.341 1.64*** 0.02 0.331
Race (White is omitted)

Black -0.18*** 0.03 -0.042 -0.22*** 0.03 -0.046
Other -0.16*** 0.03 -0.036 -0.10*** 0.03 -0.019

Education (less than high school is omitted)
High school 0.25*** 0.02 0.065 0.33*** 0.02 0.078
College and above 0.52*** 0.03 0.127 0.59*** 0.03 0.129

Health Insurance (having no insurance coverage is omitted)
Public HI_65 -0.05* 0.03 -0.010 -0.004 0.03 -0.0002
Public HI_64 -0.62*** 0.04 -0.146 -0.59*** 0.05 -0.119
Private HI 0.08*** 0.02 0.018 0.12*** 0.02 0.025

Constant -0.74** 0.33 -1.04*** 0.25
Correlation Coefficient 0.13*** 0.01
Note: 1) *, **, and *** represent 10, 5 and 1 percent significance, respectively;

2) indicator variable Public HI_65 equals 1 if one has public insurance and age≥65;
3) indicator variable Public HI_64 equals 1 if one has public insurance and age≤64;
4) the columns labelled AME list average marginal effects of variables on the probability of
being in good health the next period.
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A.12.3 Survival Rates Parameter Estimates

I also use a bivariate probit framework to model survival rates in the next period as a func-
tion of current health status, age, race, and education degree. Table A16 lists the estimated
parameters that affect survival rates and the AME for each of the variables. For example,
the estimates of the "Good Health" parameters indicate that spouses who have good health
this period are more likely to survive in the next period. The AMEs of the "Good Health"
variable show that, on average, improving health status from bad to good increases the
probability of being alive in the next period by 7.0 and 3.8 percentage points for husbands
and wives, respectively.

Table A16: Survival Rates Parameter Estimates
Husband’s Equation Wife’s Equation

Variable Estimate S/E AME Estimate S/E AME
Age 0.003 0.002

Age/10 0.29** 0.12 0.51*** 0.13
(Age/10)2 -0.05*** 0.01 -0.005 -0.06 0.01 -0.003

Hispanic 0.21*** 0.04 0.020 0.29*** 0.06 0.015
Good Health 0.74*** 0.02 0.070 0.74*** 0.03 0.038
Race (White is omitted)

Black -0.04 0.03 -0.003 -0.07* 0.04 -0.004
Other -0.001 0.05 -0.0007 -0.11* 0.06 -0.006

Education (less than high school is omitted)
High school 0.005 0.02 0.0005 0.003 0.03 0.0002
College and above 0.11*** 0.03 0.010 0.12** 0.05 0.006

Constant 1.58** 0.44 0.99** 0.43
Correlation Coefficient 0.11*** 0.02
Note: 1) *, **, and *** represent 10, 5 and 1 percent significance, respectively;

2) the columns labelled AME list average marginal effects of variables on the probability of
being alive in the next period.
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